Generalised stretched Littlewood-Richardson coefficients
نویسنده
چکیده
In this paper we investigate Q(n) = Q λ′,μ′ (n) = P ν c(nλ + λ;nμ+ μ, ν) as a function of n and show that Q(n) is bounded above if and only if λ/μ is a partition or rotated partition. Here c(λ;μ, ν) is the LittlewoodRichardson coefficient. So Q(n) counts the number of LR tableaux of shape (nλ + λ)/(nμ + μ) or the total number of irreducible characters in the skew character [(nλ+ λ)/(nμ + μ)]. We furthermore investigate the function P (n) = P λ′,μ′,ν′ (n) = c(nλ + λ;nμ+ μ, nν + ν) as a function of n.
منابع مشابه
Estimating deep Littlewood-Richardson Coefficients
Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups (GLn). The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concav...
متن کاملA max-flow algorithm for positivity of Littlewood-Richardson coefficients
Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...
متن کاملLittlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.
متن کاملA polynomiality property for Littlewood-Richardson coefficients
We present a polynomiality property of the Littlewood-Richardson coefficients c λμ . The coefficients are shown to be given by polynomials in λ, μ and ν on the cones of the chamber complex of a vector partition function. We give bounds on the degree of the polynomials depending on the maximum allowed number of parts of the partitions λ, μ and ν. We first express the Littlewood-Richardson coeffi...
متن کاملSymmetric Skew Quasisymmetric Schur Functions
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 118 شماره
صفحات -
تاریخ انتشار 2011